Essential information for end of life vehicle dismantling, depollution and recycling

OHRA
Autodrain
Email
Print

HSSMI – Discussions with the Industry: Non-Destructive Methods for Battery Testing to Identify Failure Modes Where They Happen

Project VALUABLE, led by HSSMI, has been instrumental in shedding light on second-life opportunities for Li-ion batteries.

 

As the project closed at the end of March, we are now sharing our findings in order to generate discussion amongst the public and, in particular, those who are looking to continue the research that VALUABLE began. In this blog series, we will be discussing a different battery-related topic each time – from testing and legislation to end of life, reuse, recycling and remanufacturing. This time, we get into testing and metrology.

HSSMI - Discussions with the Industry: Non-Destructive Methods for Battery Testing to Identify Failure Modes Where They Happen f
Image: © Creativa Images / Adobe Stock

Roughly 70% of a battery cell’s value can be attributed to the cost of materials. This presents a major challenge for cell manufacturers, who want to be resource efficient, avoid the significant financial impact that faulty parts and rejects can have on their business models, as well as minimise production waste and associated costs.

A major challenge currently seen in the industry is the impact of detecting failures further down the manufacturing line from where they originally occurred. During cell assembly, typically only mechanical and electrical performance tests are conducted, and any changes in electrochemical performance are only detected at end-of-line testing, i.e. in the expensive formation and ageing processes (FA&T).

Moreover, some failures are either non-visible with the naked eye or occur over time within the cell and currently can only be detected using destructive testing techniques prior to FA&T. There is a need for non-destructive, in-line testing methods that can measure parameters related to cell performance, as well as mechanical or secondary performance indicators, such as electrode alignment, density and homogeneity. The development of non-destructive inline testing machines and procedures will enable manufacturers to employ a no-faults-forward principle, thereby reducing costs invested in failed parts, limiting unnecessary waste and optimising the number of FA&T (formation, ageing and testing) channels.

Within VALUABLE, project partners National Physical Laboratory (NPL) and University College London (UCL) led the work exploring testing and metrology. Their collaboration looked at various testing methodologies, including X-ray testing, optical imaging, as well as dimensional and acoustic testing methods.

In combination with acoustics and electrochemistry, dimensional metrology capabilities can rapidly map the macroscopic changes to a battery as a function of its State of Health (a metric expressing the fraction of full charge capacity remaining relative to its initial value). Additional applications of dimensional techniques include the in-line characterisation of electrode coating homogeneity on a pilot line as a function of rolling speed. These methods and techniques have the potential to allow a battery triage approach for second life opportunities and scale-up for adoption in manufacturing lines.

Commercialisation of the acoustic testing method has been investigated in the Automotive Transformation Fund project AcouBat, which includes UCL, HSSMI, AMTE Power, and JW Froehlich. The acoustic test method provides a cheap, non-invasive and highly sensitive way to assess mechanical internal characteristics of completed cells and infer electrochemical performance. It can be used for a range of battery chemistries to determine whether cell damage is occurring under test conditions and aid in predicting cell failures. The inline acoustic method can detect faulty cells or poor electrode coatings before the cells are formed, stopping errors at source and preventing their progress down the production line.

The AcouBat project will test the acoustic method in a real-life setting – on AMTE Power’s production line. Alongside the physical validation, HSSMI will create a digital simulation, which will help analyse different scenarios and establish where the acoustic method brings the most benefit along a high volume production line.

Visit www.hssmi.org

adam hewitt ltd

More News

Autodrain

ATF Professional LLP is registered in England and Wales with Partnership number OC418339

The views and opinions expressed on ATF Professional are solely those of the original authors and other contributors. These views and opinions do not necessarily represent those of the editor, publisher or staff of ATF Professional.

 

Contact

01432 355099

© All rights reserved

Owain Griffiths

Owain Griffiths

Head of Circular Economy at Volvo Cars

Owain joined Volvo Cars in June 2021 to lead Circular Economy in the Global Sustainability Team. The company has committed to being a circular business by 2040 and has financial, recycled content and CO2 based targets for 2025, all of which Owain is working across the company to make happen. Owain previously worked for circular economy consultancy Oakdene Hollins where he advised businesses on evidence led circular economy implementation. 

Turning into a circular business and the importance of vehicle reuse and recycling.

The presentation will cover the work Volvo Cars is doing to achieve 2025 but mainly focus on the transformational work towards 2040 and the business and value chain changes being considered. Attention will be paid to the way vehicles are being dealt with at the end of life and the complexities of closing material and component loops. Opportunities and challenges which Volvo Cars is facing will be presented including engagement with 3rd parties and increasing pressure from stakeholders.